JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

ER-Coordinated Activities of Rab22a and Rab5a Drive Phagosomal Compaction and Intracellular Processing of Borrelia burgdorferi by Macrophages.

Cell Reports 2015 September 23
Borrelia burgdorferi is the causative agent of Lyme disease, a multisystemic disorder affecting the skin, joints, and nervous system. Macrophages and dendritic cells counteract Borrelia dissemination through internalization and degradation of spirochetes. We now show that Borrelia internalization by primary human macrophages involves uptake and compaction into Rab22a-positive phagosomes that are in close contact with Rab5a-positive vesicles. Compaction of borreliae involves membrane extrusion from phagosomes, is driven by Rab22a and Rab5a activity, and is coordinated by ER tubules forming contact sites of Rab22a phagosomes with Rab5a vesicles. Importantly, Rab22a and Rab5a depletion leads to reduced localization to lysosomes and to increased intracellular survival of spirochetes. These data show that Rab22a- and Rab5a-driven phagosomal uptake is a crucial step in the vesicular cascade that leads to elimination of spirochetes by macrophages. Rab22a and Rab5a thus present as potential molecular targets for the modulation of intracellular processing of borreliae in human immune cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app