JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

7,8-Dihydroxyflavone reduces sleep during dark phase and suppresses orexin A but not orexin B in mice.

Brain-derived neurotrophic factor (BDNF) binds to Tropomyosin-receptor-kinase B (TrkB) receptors that regulate synaptic strength and plasticity in the mammalian nervous system. 7,8-Dihydroxyflavone (DHF) is a recently identified small molecule Trk B agonist that has been reported to ameliorate depression, attenuate the fear response, improve memory consolidation, and exert neuroprotective effects. Poor and disturbed sleep remains a symptom of major depressive disorder and most current antidepressants affect sleep. Therefore, we conducted sleep/wake recordings and concomitant measurement of brain orexins, endogenous peptides that suppress sleep, in mice for this study. Baseline polysomnograph recording was performed for 24 h followed by treatment with either 5 mg/kg of DHF or vehicle at the beginning of the dark phase. Animals were sacrificed the following day, one hour after the final treatment with DHF. Orexin A and B were quantified using ELISA and radioimmunoassay, respectively. Total sleep was significantly decreased in the DHF group, 4 h after drug administration in the dark phase, when compared with vehicle-treated animals. This difference was due to a significant decrease of non-rapid eye movement sleep, but not rapid eye movement sleep. DHF increased power of alpha and sigma bands but suppressed power of gamma band during sleep in dark phase. Interestingly, hypothalamic levels of orexin A were also significantly decreased in the DHF group (97 pg/mg) when compared with the vehicle-treated group (132 pg/mg). However, no significant differences of orexin B were observed between groups. Additionally, no change was found in immobility tests.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app