EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Optimization of an HPLC Method for Determining the Genomic Methylation Levels of Taxus Cells.

An HPLC method for quantifying total DNA methylation in Taxus chinensis cells is described. Optimal conditions for the method were established as follows: DNA was hydrolyzed with DNA degradase at 37°C for 3 h. The mobile phase was a mixture of Solvent A [50 mM potassium dihydrogen phosphate/triethylamine (100:0.2, v/v)] and Solvent B (methanol); the gradient was 10% (v/v) solvent B. The calibration curves for deoxycytidine monophosphate (dCMP) and methylated dCMP were linear within 1.0-160.0 µg mL(-1), with correlation coefficients of 0.9996 and 0.9998. The limits of detection for dCMP and 5-mdCMP were 0.482 and 0.301 ng mL(-1), respectively, and the limits of quantification were 1.6 and 1.0 ng mL(-1), respectively. The method has been validated according to the current International Conference Harmonization guidelines. The method was able to quantify the content of dCMP and methylated dCMP specifically, accurately and precisely. The global DNA methylation level in different Taxus cells was measured using as little as 3 µg of DNA according to the optimized procedure. In addition, degradation of 5-methylcytosine was prevented.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app