JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy.

Aging reduces skeletal muscle mass and strength, but the underlying molecular mechanisms remain elusive. Here, we used mouse models to investigate molecular mechanisms of age-related skeletal muscle weakness and atrophy as well as new potential interventions for these conditions. We identified two small molecules that significantly reduce age-related deficits in skeletal muscle strength, quality, and mass: ursolic acid (a pentacyclic triterpenoid found in apples) and tomatidine (a steroidal alkaloid derived from green tomatoes). Because small molecule inhibitors can sometimes provide mechanistic insight into disease processes, we used ursolic acid and tomatidine to investigate the pathogenesis of age-related muscle weakness and atrophy. We found that ursolic acid and tomatidine generate hundreds of small positive and negative changes in mRNA levels in aged skeletal muscle, and the mRNA expression signatures of the two compounds are remarkably similar. Interestingly, a subset of the mRNAs repressed by ursolic acid and tomatidine in aged muscle are positively regulated by activating transcription factor 4 (ATF4). Based on this finding, we investigated ATF4 as a potential mediator of age-related muscle weakness and atrophy. We found that a targeted reduction in skeletal muscle ATF4 expression reduces age-related deficits in skeletal muscle strength, quality, and mass, similar to ursolic acid and tomatidine. These results elucidate ATF4 as a critical mediator of age-related muscle weakness and atrophy. In addition, these results identify ursolic acid and tomatidine as potential agents and/or lead compounds for reducing ATF4 activity, weakness, and atrophy in aged skeletal muscle.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app