Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tetrazolylhydrazides as Selective Fragment-Like Inhibitors of the JumonjiC-Domain-Containing Histone Demethylase KDM4A.

ChemMedChem 2015 November
The JumonjiC-domain-containing histone demethylase 2A (JMJD2A, KDM4A) is a key player in the epigenetic regulation of gene expression. Previous publications have shown that both elevated and lowered enzyme levels are associated with certain types of cancer, and therefore the definite role of KDM4A in oncogenesis remains elusive. To identify a novel molecular starting point with favorable physicochemical properties for the investigation of the physiological role of KDM4A, we screened a number of molecules bearing an iron-chelating moiety by using two independent assays. In this way, we were able to identify 2-(1H-tetrazol-5-yl)acetohydrazide as a novel fragment-like lead structure with low relative molecular mass (Mr =142 Da), low complexity, and an IC50 value of 46.6 μm in a formaldehyde dehydrogenase (FDH)-coupled assay and 2.4 μm in an antibody-based assay. Despite its small size, relative selectivity against two other demethylases could be demonstrated for this compound. This is the first example of a tetrazole group as a warhead in JMJD demethylases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app