JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effect of 12-wk ω-3 fatty acid supplementation on in vivo thalamus glutathione concentration in patients "at risk" for major depression.

Nutrition 2015 October
OBJECTIVES: As life expectancy increases, the need to prevent major health disorders is clear. Depressive symptoms are common in older adults and are associated with cognitive decline and greater risk for transitioning to major depression. Oxidative stress may be implicated in the pathophysiology of major depression and can be measured in vivo using proton magnetic resonance spectroscopy via the neurometabolite glutathione (GSH). Evidence suggests ω-3 fatty acid (FA) supplementation may prevent depression and directly affect GSH concentration. The aim of this study was to examine the effect of ω-3 FA supplementation on in vivo GSH concentration in older adults at risk for depression.

METHODS: Fifty-one older adults at risk for depression were randomized to receive either four 1000-mg ω-3 FA supplements daily (containing eicosapentaenoic acid 1200 mg plus docosahexaenoic acid 800 mg) or placebo (four 1000-mg paraffin oil placebo capsules daily) for 12 wk. Participants underwent magnetic resonance spectroscopy, as well as medical, neuropsychological, and self-report assessments at baseline and after 12 wk of supplementation. GSH was measured in the thalamus and calculated as a ratio to creatine. Depressive symptoms were measured using the Patient Health Questionnaire.

RESULTS: Compared with the group given the ω-3 FA supplements, the placebo group had greater change in the GSH-to-creatine ratio in the thalamus (t = 2.00; P = 0.049) after the 12 wk intervention. This increase was in turn associated with a worsening of depressive symptoms (r = 0.43; P = 0.043).

CONCLUSIONS: Depressive symptom severity in older adults appears to be associated with increased brain levels of GSH, a key marker of oxidative stress. Importantly, ω-3 FA supplementation may attenuate oxidative stress mechanisms, thereby offering benefits for depression prevention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app