JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

[Fibroblast growth factor-1 inhibits Wnt/β-catenin pathway during adipogenesis].

OBJECTIVE: To determine the time course and potential mechanism of fibroblast growth factor-1 (FGF-1) in the regulation of adipogenesis.


METHODS: We cultured human Simpson-Golabi-Behmel syndrome (SGBS) pre-adipocytes with recombinant FGF-1 and harvested cells at various stages prior to and during differentiation; at cell proliferation (D-3), confluence (D0), early (D3), middle (D7) and mature (D14) stages of differentiation. We determined lipid accumulation in mature adipocytes by morphological observation and quantitative measurement of oil red O staining. We also examined the expression of adipogenic genes and related markers involved in the Wnt/β-catenin pathway using quantitative Real-time PCR and Western blot.


RESULTS: Compared to control SGBS cells, treatment with FGF-1 increased lipid accumulation; induced a sustained increase in the mRNA for peroxisome proliferater-activated receptor γ (PPARγ), glyceraldehyde-3-phosphate dehydrogenase (G3PDH), adiponectin and glucose transporter type 4 (GLUT4); and promoted a sustained decrease in expression of markers of the Wnt/β-catenin pathway, β-catenin and transcription factor 4 (TCF4).


CONCLUSION: The adipogenic effects of FGF-1 are apparent throughout the whole priming and differentiation period in human SGBS pre-adipocytes. Furthermore, our results suggest that FGF-1 
promotes adipogenesis, at least in part, via a sustained decrease in activity of the Wnt/β-catenin pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app