Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Validation Studies
Add like
Add dislike
Add to saved papers

Correlation of tumor characteristics derived from DCE-MRI and DW-MRI with histology in murine models of breast cancer.

NMR in Biomedicine 2015 October
The purpose of this work was to determine the relationship between the apparent diffusion coefficient (ADC, from diffusion-weighted (DW) MRI), the extravascular, extracellular volume fraction (ve , from dynamic contrast-enhanced (DCE) MRI), and histological measurement of the extracellular space fraction. Athymic nude mice were injected with either human epidermal growth factor receptor 2 positive (HER2+) BT474 (n = 15) or triple negative MDA-MB-231 (n = 20) breast cancer cells, treated with either Herceptin (n = 8), Abraxane (low dose n = 7, high dose n = 6), or saline (n = 7 for each cell line), and imaged using DW- and DCE-MRI before, during, and after treatment. After the final imaging acquisition, the tissue was resected and evaluated by histological analysis. H&E-stained central slices were scanned using a digital brightfield microscope and evaluated with thresholding techniques to calculate the extracellular space. For both BT474 and MDA-MB-231, the median ADC of the central slice exhibited a significantly positive correlation with the corresponding central slice extracellular space as measured by H&E (p = 0.03, p < 0.01, respectively). Median ve calculated from the central slice showed differing results between the two cell lines. For BT474, a significant correlation between ve and extracellular space was calculated (p = 0.02), while MDA-MB-231 tumors did not demonstrate a significant correlation (p = 0.64). Additionally, there was no correlation discovered between ADC and ve with either whole tumor analysis or central slice analysis (p > 0.05). While ADC correlates well with the histologically determined fraction of extracellular space, these data add to the growing body of literature that suggests that ve derived from DCE-MRI is not a reliable biomarker of extracellular space for a range of physiological conditions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app