Add like
Add dislike
Add to saved papers

The effect of hyperinsulinaemic-euglycaemic clamp and exercise on bone remodeling markers in obese men.

Bone remodelling markers (BRMs) are suppressed following a glucose load and during glucose infusion. As exercise increases indices of bone health and improves glucose handling, we hypothesised that, at rest, hyperinsulinaemic-euglycaemic clamp will suppress BRMs in obese men and that exercise prior to the clamp will prevent this suppression. Eleven obese nondiabetic men (age 58.1±2.2 years, body mass index=33.1±1.4 kg m(-2) mean±s.e.m.) had a hyperinsulinaemic-euglycaemic clamp (HEC) at rest (Control) and 60 min post exercise (four bouts × 4 min cycling at 95% of hazard ratiopeak). Blood samples were analysed for serum insulin, glucose, bone formation markers, total osteocalcin (tOC) and procollagen type 1 N-terminal propeptide (P1NP), and the bone resorption marker, β-isomerised C-terminal telopeptides (β-CTx). In the control trial (no exercise), tOC, P1NP and β-CTx decreased with HEC by >10% compared with baseline (P<0.05). Fasting serum glucose, but not insulin, tended to correlate negatively with the BRMs (β range -0.57 to -0.66, p range 0.051-0.087). β-CTx, but not OC or P1NP, increased within 60 min post exercise (∼16%, P<0.01). During the post-exercise HEC, the glucose infusion rate was ∼30% higher compared with the no exercise trial. Despite this, BRMs were only suppressed to a similar extent as in the control session (10%). HEC suppressed BRMs in obese men. Exercise did not prevent this suppression of BRMs by HEC but improved glucose handling during the trial. It remains to be tested whether an exercise intervention of longer duration may be able to prevent the effect of HEC on bone remodelling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app