JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Evaluation of Reference Genes for RT-qPCR in Tribolium castaneum (Coleoptera: Tenebrionidae) Under UVB Stress.

Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) has become a widely used technique to quantify gene expression. It is necessary to select appropriate reference genes for normalization. In the present study, we assessed the expression stability of seven candidate genes in Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) irradiated by ultraviolet B (UVB) at different developmental stages for various irradiation time periods. The algorithms of geNorm, NormFinder, and BestKeeper were applied to determine the stability of these candidate genes. Ribosomal protein genes RpS3, RpL13A, and β-actin gene (ActB) showed the highest stability across all UVB irradiation time points, whereas expression of other normally used reference genes, such as those encoding the β-tubulin gene TUBB and the E-cadherin gene CAD, varied at different developmental stages. This study will potentially provide more suitable reference gene candidates for RT-qPCR analysis in T. castaneum subjected to environmental stresses, particularly UV irradiation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app