Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chromosome Aberrations Determined by FISH in Radiation Workers from the Sellafield Nuclear Facility.

Radiation Research 2015 September
Workers from the Sellafield nuclear facility (Cumbria, UK) with occupational exposures to external sources of ionizing radiation were examined for translocation frequencies in peripheral blood lymphocytes using fluorescence in situ hybridization (FISH). This is an extension of an earlier study of retired workers, and includes analyses of additional samples from the earlier collection, bringing the total to 321. Another 164 samples from both current and retired employees, including 26 repeat samples, were obtained from a new collection, thus giving a combined dataset of 459 workers. This all-male population of workers was divided into 6 dose groups comprising 97 with recorded external occupational doses <50 mGy, 118 with 50-249 mGy, 129 with 250-499 mGy, 89 with 500-749 mGy, 17 with 750-999 mGy and 9 with >1,000 mGy. Univariate analysis showed a significant association between external dose and translocation frequency (P < 0.001) with the estimate of slope ± standard error being 1.174 ± 0.164 × 10(-2) translocations per Gy. Multivariate analysis revealed that age increased the rate of translocations by 0.0229 ± 0.0052 × 10(-2) per year (P < 0.001). However, the impact of age adjustment on the radiation dose response for translocation frequencies was minor with the new estimate of slope ± standard error being 1.163 ± 0.162 × 10(-2) translocations per Gy. With the dose response for the induction of translocations by chronic in vivo low-LET radiation now well characterized, cytogenetic analysis can play an integral role in retrospective dose reconstruction of chronic exposure in epidemiological studies of exposed populations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app