JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A Self-Assembled, Low-Cost, Microstructured Layer for Extremely Stretchable Gold Films.

We demonstrate a simple, low-cost, and green approach to deposit a microstructured coating on the silicone elastomer polydimethylsiloxane (PDMS) that can be coated with gold to produce highly stretchable and conductive films. The microstructured coating is fabricated using an aqueous emulsion of poly(vinyl acetate) (PVAc): common, commercially available white glue. The aqueous glue emulsion self-assembles on the PDMS surface to generate clustered PVAc globules, which can be conformally coated with gold. The microstructured surface provides numerous defect sites that localize strain when the structure is stretched, resulting in the initiation of numerous microcracks. As the structure is further elongated, the microcracks interact with one another, preventing long-range crack propagation and thus preserving the conduction pathway. The resistance of PDMS/glue/gold structures remains remarkably low (23 times the initial resistance) up to 65% elongation, making these structure useful as stretchable interconnects. Decreasing the concentration of the PVAc aqueous emulsion reduces the density of defect sites of the microstructure, which increases the change in resistance of the gold films with stretching. In this way, we can tune the resistance changes of the PDMS/glue/gold structures and increase their sensitivity to strain. We demonstrate the use of these structures as wearable, soft strain sensors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app