Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PRED treatment mediated stable and efficient water oxidation performance of the Fe2O3 nano-coral structure.

Nanoscale 2015 September 29
Herein, we demonstrate that an electrochemical surface treatment of Fe foil with simple pulse reverse electrodeposition (PRED) prior to thermal oxidation can substantially enhance the photoelectrochemical (PEC) stability and water splitting performance of Fe2O3/Fe photoanodes. Comprehensive structural (XRD, FESEM, and HRTEM), compositional (XPS depth profiling), and electrochemical (EIS and Mott-Schottky) analyses were performed to understand the effect of PRED treatment on the PEC performance of fabricated photoanodes. It is revealed that air-exposed Fe foil is prone to formation of a loosely bound surface oxide layer that, upon annealing at 800 °C, results in an unstable Fe2O3 nano-flake (2-3 μm long) morphology. In contrast, when such Fe foil is pre-treated with PRED to etch the loosely bound oxide layer, adherent inverse-opal-like nano-coral structures (60-100 nm thin) are formed. In addition to stability improvement, PRED-treatment also assists in exposing the photocatalytically active high index [104] facet sites of hematite. Thin hematite nano-coral structures with high index [104] facet sites significantly improved the separation of photo-generated charge carriers and oxygen evolution kinetics, resulting in performance enhancement with excellent photocurrent stability for extended duration in a 1 M NaOH solution under one sun illumination. The net photocurrent density for nano-coral morphology was 0.813 mA cm(-2) at 1.23 V vs. RHE, which is the highest reported value for pristine hematite photoanodes fabricated from Fe foil.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app