JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inhibition of microRNA-497 ameliorates anoxia/reoxygenation injury in cardiomyocytes by suppressing cell apoptosis and enhancing autophagy.

Oncotarget 2015 August 8
MiR-497 is predicted to target anti-apoptosis gene Bcl2 and autophagy gene microtubule-associated protein 1 light chain 3 B (LC3B), but the functional consequence of miR-497 in response to anoxia/reoxygenation (AR) or ischemia/reperfusion (IR) remains unknown. This study was designed to investigate the influences of miR-497 on myocardial AR or IR injury. We noted that miR-497 was enriched in cardiac tissues, while its expression was dynamically changed in murine hearts subjected to myocardial infarction and in neonatal rat cardiomyocytes (NRCs) subjected to AR. Forced expression of miR-497 (miR-497 mimic) induced apoptosis in NRCs as determined by Hoechst staining and TUNEL assay. In response to AR, silencing of miR-497 using a miR-497 sponge significantly reduced cell apoptosis and enhanced autophagic flux. Furthermore, the infarct size induced by IR in adenovirus (Ad)-miR-497 sponge infected mice was significantly smaller than in mice receiving Ad-vector or vehicle treatment, while Ad-miR-497 increased infarct size. The expression of Bcl-2 and LC3B-II in NRCs or in murine heart was significantly decreased by miR-497 mimic and enhanced by miR-497 sponge. These findings demonstrate that inhibition of miR-497 holds promise for limiting myocardial IR injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app