Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Design and synthesis of 11α-substituted bile acid derivatives as potential anti-tuberculosis agents.

We have synthesized a series of novel 11α-triazoyl bile acid derivatives. In addition, we also have synthesized N-alkyl and N-acyl derivatives of C-11 amino bile acid esters. All the compounds were evaluated for the inhibitory activity against Mycobacterium tuberculosis H37Ra (MTB) at 30 μg/mL level. Four lead compounds (2b, 3, 7 and 8) were further confirmed from their dose dependent effect against MTB. These compounds were found to be active against Dormant and active stage MTB under both in vitro as well as within THP1 host macrophages. The most promising compound 2b showed strong antitubercular activities against MTB under in vitro and ex vivo (IC90 value of ∼3 μg/mL) conditions and almost insignificant cytotoxicity up to 100 μg/mL against THP-1, A549 and PANC-1 human cancer cell lines. Inactivity of all these compounds against Gram positive and Gram negative bacteria indicates their specificity. Molecular docking studies of these compounds into the active site of DprE1 enzyme revealed a similar binding mode to native ligands in the crystal structure thereby helping to establish a structural basis of inhibition of MTB. The synthesized compounds were analyzed for ADME properties and showed potential to develop good oral drug candidates. Our results clearly indicate the identification of some novel, selective and specific inhibitors against MTB that can be explored further for potential antitubercular drug.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app