JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Guided differentiation of bone marrow stromal cells on co-cultured cartilage and bone scaffolds.

Soft Matter 2015 October 15
Focal chondral defects that result from traumatic injuries to the knee remain one of the most common causes of disability in patients. Current solutions for healing focal cartilage defects are mainly limited by the production of inferior cartilage-like tissue and subsequent delamination due to incomplete healing of the subchondral bone. In this experiment a polymeric osteochondral implant for guiding autologous bone marrow stem cells (BMSCs) to populate the scaffold to create distinctive bone and cartilage tissue is used. The cartilage component presents bioactive aligned nanofibers containing chondroitin sulfate and hyaluronic acid while the bone component includes hydroxyapatite to promote chondrogenic and osteogenic differentiation of the rat BMSCs in vitro. The different cartilage and bone components resulted in the elevated expression of osteogenic markers such as bone sialoprotein, runt related transcription factor 2, and bone morphogenetic protein 2 in the deeper bone layer and chondrogenic markers such as collagen type II and aggrecan in the cartilage layer. Through immunofluorescence imaging, the alignment of the secreted collagen type II fibrils and aggrecan was visualized and quantified on the cartilage component of the scaffold. These current studies show that the biodegradable biphasic osteochondral implant may be effective in promoting more hyaline-like tissue to fill in chondral defects of the knee.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app