Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Optimization of a multiplex CRISPR/Cas system for use as an antiviral therapeutic.

RNA-guided endonucleases or CRISPR/Cas systems have been widely employed for gene engineering/DNA editing applications, and have recently been used against a variety of dsDNA viruses as a potential therapeutic. However, in vivo delivery to specific tissue reservoirs using adeno-associated virus (AAV) vectors is problematic due to the large coding requirement for the principal effector commonly used in these applications, Streptococcus pyogenes (Spy) Cas9. Here we describe design of a minimal CRISPR/Cas system that is capable of multiplexing and can be packaged into a single AAV vector. This system consists of the small Type II Cas9 protein from Staphylococcus aureus (Sau) driven by a truncated CMV promoter/enhancer, and flanked 3' by a poly(A) addition signal, as well as two sgRNA expression cassettes driven by either U6 or ∼70-bp tRNA-derived Pol III promoters. Specific protocols for construction of these AAV vector scaffolds, shuttle cloning of their contents into AAV and lentiviral backbones, and a quantitative luciferase assay capable of screening for optimal sgRNAs, are detailed. These protocols can facilitate construction of AAV vectors that have optimal multiplexed sgRNA expression and function. These will have potential utility in multiplex applications, including in antiviral therapy in tissues chronically infected with a pathogenic DNA virus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app