Add like
Add dislike
Add to saved papers

Effect of buffer conditions on CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α- and 4-hydroxylation by human liver microsomes.

1. Buffer conditions in in vitro metabolism studies using human liver microsomes (HLM) have been reported to affect the metabolic activities of several cytochrome P450 (CYP) isozymes in different ways, although there are no reports about the dependence of CYP2C8 activity on buffer conditions. 2. The present study investigated the effect of buffer components (phosphate or Tris-HCl) and their concentration (10-200 mM) on the CYP2C8 and CYP3A4 activities of HLM, using paclitaxel and triazolam, respectively, as marker substrates. 3. The Km (or S50) and Vmax values for both paclitaxel 6α-hydroxylation and triazolam α- and 4-hydroxylation, estimated by fitting analyses based on the Michaelis-Menten or Hill equation, greatly depended on the buffer components and their concentration. 4. The CLint values in phosphate buffer were 1.2-3.0-fold (paclitaxel) or 3.1-6.4-fold (triazolam) higher than in Tris-HCl buffer at 50-100 mM. These values also depended on the buffer concentration, with a maximum 2.3-fold difference observed between 50 and 100 mM which are both commonly used in drug metabolism studies. 5. These findings suggest the necessity for optimization of the buffer conditions in the quantitative evaluation of metabolic clearances, such as in vitro-in vivo extrapolation and also estimating the contribution of a particular enzyme in drug metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app