Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Design of a Computer-Assisted System to Automatically Detect Cell Types Using ANA IIF Images for the Diagnosis of Autoimmune Diseases.

Indirect immunofluorescence technique applied on HEp-2 cell substrates provides the major screening method to detect ANA patterns in the diagnosis of autoimmune diseases. Currently, the ANA patterns are mostly inspected by experienced physicians to identify abnormal cell patterns. The objective of this study is to design a computer-assisted system to automatically detect cell patterns of IIF images for the diagnosis of autoimmune diseases in the clinical setting. The system simulates the functions of modern flow cytometer and provides the diagnostic reports generated by the system to the technicians and physicians through the radar graphs, box-plots, and tables. The experimental results show that, among the IIF images collected from 17 patients, 6 were classified as coarse-speckled, 3 as diffused, 2 as discrete-speckled, 1 as fine-speckled, 2 as nucleolar, and 3 as peripheral patterns, which were consistent with the patterns determined by the physicians. In addition to recognition of cell patterns, the system also provides the function to automatically generate the report for each patient. The time needed for the whole procedure is less than 30 min, which is more efficient than the manual operation of the physician after inspecting the ANA IIF images. Besides, the system can be easily deployed on many desktop and laptop computers. In conclusion, the designed system, containing functions for automatic detection of ANA cell pattern and generation of diagnostic report, is effective and efficient to assist physicians to diagnose patients with autoimmune diseases. The limitations of the current developed system include (1) only a unique cell pattern was considered for the IIF images collected from a patient, and (2) the cells during the process of mitosis were not adopted for cell classification.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app