Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Involvement of Notch signaling in early chick ovarian follicle development.

The formation of primordial follicles is a crucial process in the establishment of follicle pools required for the female's reproductive life span. For laying hens, ample follicles are a prerequisite for high laying performance. Notch signaling plays critical roles in germ cell cysts breakdown and in the formation of primordial follicles. Here, we investigated the role of Notch signaling in the ovarian development of post-hatch chicks. Results showed that around post-hatch day 4 (H4), the germ cell cysts broke apart, oocytes became surrounded by squamous pregranulosa cells, and the primordial follicles were then formed. Subsequently, we detected the expression of Notch signaling-related genes including Notch receptors (Notch1, 2), ligands (Jag1, 2 and Dll1, 4), and target genes (Hes1, Hey1). These genes all showed expression at H4 and some of these genes were up-regulated during primordial follicle formation. To evaluate the Notch signaling requirement for early follicular development, we adopted an in vitro ovary culture system. Suppression of Notch signaling by γ-secretase inhibitor induced a decrease of primordial follicles and an increase of germ cells in cysts. Attenuating Notch signaling also inhibited the phosphatidylinositol 3-kinase/protein kinase B pathways and suppressed cadherin expression. These results suggest that Notch signaling is endowed with an indispensable role in primordial follicle formation in post-hatch chicks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app