JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Quantification of PEG-maleimide ligands and coupling efficiencies on nanoparticles with Ellman's reagent.

Analytical Chemistry 2015 September 16
The surface modification of nanometer- and micrometer-sized particles and planar substrates with polyethylene glycol (PEG) ligands of varying length is a very common strategy to tune the hydrophilicity and biocompatibility of such materials, minimize unspecific interactions, improve biofunctionalization efficiencies, and enhance blood circulation times. Nevertheless, simple methods for the quantification of PEG ligands are comparatively rare. Here, we present a new concept for the quantification of PEG ligands for maleimide-functionalized PEG molecules and the determination of PEG coupling efficiencies, exploiting the quantitative reaction of maleimide with l-cysteine, and the subsequent determination of the unreacted thiol with the photometric Ellman's test. This is shown for heterobifunctional PEG spacers of varying length and amino-functionalized polystyrene nanoparticles (PS NP) without and with differently charged encoding dyes. The reaction of l-cysteine with the Ellman's reagent was monitored photometrically and with electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) to derive the reaction mechanism and to obtain the stoichiometry factor for l-cysteine quantification. Mass balances and quantification of l-cysteine via its sulfur concentration using elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS) confirmed the accuracy and reliability of this approach that can be extended to other surface groups and ligands.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app