Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In Vitro Comparison of Active and Passive Physiological Control Systems for Biventricular Assist Devices.

The low preload and high afterload sensitivities of rotary ventricular assist devices (VADs) may cause ventricular suction events or venous congestion. This is particularly problematic with rotary biventricular support (BiVAD), where the Starling response is diminished in both ventricles. Therefore, VADs may benefit from physiological control systems to prevent adverse events. This study compares active, passive and combined physiological controllers for rotary BiVAD support with constant speed mode. Systemic (SVR) and pulmonary (PVR) vascular resistance changes and exercise were simulated in a mock circulation loop to evaluate the capacity of each controller to prevent suction and congestion and increase exercise capacity. All controllers prevented suction and congestion at high levels of PVR (900 dynes s cm(-5)) and SVR (3000 dynes s cm(-5)), however these events occurred in constant speed mode. The controllers increased preload sensitivity (0.198-0.34 L min(-1) mmHg(-1)) and reduced afterload sensitivity (0.0001-0.008 L min(-1) mmHg(-1)) of the VADs when compared to constant speed mode (0.091 and 0.072 L min(-1) mmHg(-1) respectively). The active controller increased pump speeds (400-800 rpm) and pump flow by 2.8 L min(-1) during exercise, thus increasing exercise capacity. By reducing suction and congestion and by increasing exercise capacity, the control systems presented in this study may help increase quality of life of VAD patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app