Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Loss of hypermucoviscosity and increased fitness cost in colistin-resistant Klebsiella pneumoniae sequence type 23 strains.

In this study, we investigated the effects of colistin resistance on virulence and fitness in hypermucoviscous (HV) Klebsiella pneumoniae sequence type 23 (ST23) strains. Colistin-resistant mutants were developed from three colistin-susceptible HV K. pneumoniae ST23 strains. The lipid A structures of strains were analyzed by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Changes in HV were investigated using the string test, and extracellular polysaccharide production was quantified. The expression levels of the phoQ, pmrD, pmrB, pbgP, magA, and p-rmpA2 genes, serum resistance, and biofilm-forming activity were determined. The fitness of colistin-resistant mutants compared to that of the parental strains was examined by determining the competitive index (CI). The colistin-resistant mutants exhibited reduced HV, which was accompanied by decreased formation of capsular polysaccharides (CPS) and reduced expression of genes (magA and p-rmpA2). While there was enhanced expression of pmrD and pbgP in all colistin-resistant derivatives, there were differences in the expression levels of phoQ and pmrB between strains. MALDI-TOF analysis detected the addition of aminoarabinose or palmitate to the lipid A moiety of lipopolysaccharide in the colistin-resistant derivatives. In addition, survival rates in the presence of normal human serum were decreased in the mutant strains, and CI values (0.01 to 0.19) indicated significant fitness defects in the colistin-resistant derivatives compared to the respective parental strains. In hypervirulent HV K. pneumoniae strains, the acquisition of colistin resistance was accompanied by reduced CPS production, impaired virulence, and a significant fitness cost.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app