Add like
Add dislike
Add to saved papers

Predictive discomfort of supine humans in whole-body vibration and shock environments.

Ergonomics 2016 April
This work presents a predictive model to evaluate discomfort associated with supine humans during transportation, where whole-body vibration and repeated shock are predominant. The proposed model consists of two parts: (i) static discomfort resulting from body posture, joint limits and ambient discomfort; and (ii) dynamic discomfort resulting from the relative motion between the body segments as a result of transmitted vibration. Twelve supine subjects were exposed to single and 3D random vibrations and 3D shocks mixed with vibrations. The subjects' reported discomfort and biodynamic response were analysed under different support conditions, including a rigid surface, a stretcher and a stretcher with a spinal backboard. The results demonstrated good correlations between the predictive discomfort and the reported discomfort for the different conditions under consideration, with R(2) = 0.69-0.94 for individual subjects and R(2) = 0.94 for the group mean. The results also indicated a strong relationship between the head-neck and trunk angular velocities and discomfort during supine transportation. Practitioner Summary: The quantification of discomfort of supine humans under vibration and shocks by using a predictive model is an important contribution to this field, whereby the efficacy of different transport systems can be compared. The predictive discomfort model can be used as design criteria for ergonomic enhancement in supine transportation of humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app