Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

cis Determinants of Promoter Threshold and Activation Timescale.

Cell Reports 2015 August 26
Although the relationship between DNA cis-regulatory sequences and gene expression has been extensively studied at steady state, how cis-regulatory sequences affect the dynamics of gene induction is not known. The dynamics of gene induction can be described by the promoter activation timescale (AcTime) and amplitude threshold (AmpThr). Combining high-throughput microfluidics with quantitative time-lapse microscopy, we control the activation dynamics of the budding yeast transcription factor, Msn2, and reveal how cis-regulatory motifs in 20 promoter variants of the Msn2-target-gene SIP18 affect AcTime and AmpThr. By modulating Msn2 binding sites, we can decouple AmpThr from AcTime and switch the SIP18 promoter class from high AmpThr and slow AcTime to low AmpThr and either fast or slow AcTime. We present a model that quantitatively explains gene-induction dynamics on the basis of the Msn2-binding-site number, TATA box location, and promoter nucleosome organization. Overall, we elucidate the cis-regulatory logic underlying promoter decoding of TF dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app