JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Forced degradation of fingolimod: effect of co-solvent and characterization of degradation products by UHPLC-Q-TOF-MS/MS and 1H NMR.

Fingolimod (FGL), an immunomodulator drug for treating multiple sclerosis, was subjected to hydrolysis (acidic, alkaline and neutral), oxidation, photolysis and thermal stress, as per International Conference on Harmonization specified conditions. The drug showed extensive degradation under base hydrolysis, however, it was stable under all other conditions. A total of three degradation products (DPs) were observed. The chromatographic separation of the drug and its degradation products was achieved on a Fortis C18 (100×2.1mm, 1.7μm) column with a mobile phase composed of 0.1% formic acid (Solvent A) and acetonitrile (Solvent B) in gradient mode. All the DPs were identified and characterized by liquid chromatography-quadrupole time of flight-mass spectrometry (LC-Q-TOF-MS) in combination with accurate mass measurements. The major DP was isolated and characterized by Nuclear Magnetic resonance spectroscopy. This is a typical case of degradation where acetonitrile used as co-solvent in stress studies, reacts with FGL in base hydrolytic conditions to produce acetylated DPs. Hence, it can be suggested that acetonitrile is not preferable as a co-solvent for stress degradation of FGL. The developed UHPLC method was validated as per ICH guidelines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app