JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Interactions between nuclear genes and a foreign mitochondrial genome in the redbelly dace Chrosomus eos.

Given the coevolution process occurring between nuclear and mitochondrial genomes, the effects of introgressive hybridization remain puzzling. In this study, we take advantage of the natural co-occurrence of two biotypes bearing a similar nuclear genome (Chrosomus eos) but harbouring mitochondria from different species (wild type: C. eos; cybrids: Chrosomus neogaeus) to determine the extent of phenotype changes linked to divergence in the mitochondrial genome. Changes were assessed through differences in gene expression, enzymatic activity, proteomic and swimming activity. Our data demonstrate that complex IV activity was significantly higher in cybrids compared to wild type. This difference could result from one variable amino acid on the COX3 mitochondrial subunit and/or from a tremendous change in the proteome. We also show that cybrids present a higher swimming performance than wild type. Ultimately, our results demonstrate that the absence of coevolution for a period of almost ten million years between nuclear and mitochondrial genomes does not appear to be necessarily deleterious but could even have beneficial effects. Indeed, the capture of foreign mitochondria could be an efficient way to circumvent the selection process of genomic coevolution, allowing the rapid accumulation of new mutations in C. eos cybrids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app