JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Assessment of vascular function in Mexican women exposed to polycyclic aromatic hydrocarbons from wood smoke.

The use of solid fuels for cooking and heating is likely to be the largest source of indoor air pollution on a global scale; these fuels emit substantial amounts of toxic pollutants such as polycyclic aromatic hydrocarbons (PAHs) when used in simple cooking stoves (such as open "three-stone" fires). Moreover, indoor air pollution from biomass fuels is considered an important risk factor for human health. The aim of this study was to evaluate the relationship between exposure to PAHs from wood smoke and vascular dysfunction; in a group of Mexican women that use biomass combustion as their main energy source inside their homes. We used 1-hydroxypyrene (1-OHP) as an exposure biomarker to PAHs and it was assessed using high performance liquid chromatography. The endothelium-dependent vasodilation was assessed through a vascular reactivity compression test performed with a pneumatic cuff under visualization of the brachial artery using high resolution ultrasonography (HRU). Assessment of the carotid intima-media thickness (CIMT) was used as an atherosclerosis biomarker (also assessed using HRU); and clinical parameters such as anthropometry, blood pressure, glucose, triglycerides, total cholesterol, HDL cholesterol, LDL cholesterol, among others were also evaluated. The mean concentration of urinary 1-OHP found in exposed women was 0.46±0.32μmol/mol Cr (range: 0.086-1.23μmol/mol Cr). Moreover, vascular dysfunction (diminished endothelium dependent vasodilation) was found in 45% of the women participating in the study. Association between vascular function and 1-OHP levels was found to be significant through a logistic regression analysis (p=0.034; r(2)=0.1329). Furthermore, no association between CIMT and clinical parameters, urinary 1-OHP levels or vascular dysfunction was found. Therefore, with the information obtained in this study, we advocate for the need to implement programs to reduce the risk of exposure to PAHs in communities that use biomass fuels as a main energy source.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app