JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Abnormal megakaryopoiesis and platelet function in cyclooxygenase-2-deficient mice.

Previous studies suggest that cyclooxygenase-2 (COX-2) might influence megakaryocyte (MK) maturation and platelet production in vitro. Using a gene deletion model, we analysed the effect of COX-2 deficiency on megakaryopoiesis and platelet function. COX-2-/- mice (10-12 weeks old) have hyper-responsive platelets as suggested by their enhanced aggregation, TXA2 biosynthesis, CD62P and CD41/CD61 expression, platelet-fibrinogen binding, and increased thromboembolic death after collagen/epinephrine injection compared to wild-type (WT). Moreover, increased platelet COX-1 expression and reticulated platelet fraction were observed in COX-2-/- mice while platelet count was similar to WT. MKs were significantly reduced in COX-2-/- bone marrows (BMs), with high nuclear/cytoplasmic ratios, low ploidy and poor expression of lineage markers of maturation (CD42d, CD49b). However, MKs were significantly increased in COX-2-/- spleens, with features of MK maturation markers which were not observed in MKs of WT spleens. Interestingly, the expression of COX-1, prostacyclin and PGE2 synthases and prostanoid pattern were modified in BMs and spleens of COX-2-/- mice. Moreover, COX-2 ablation reduced the percentage of CD49b+ cells, the platelet formation and the haematopoietic stem cells in bone marrow and increased their accumulation in the spleen. Splenectomy decreased peripheral platelet number, reverted their hyper-responsive phenotype and protected COX-2-/- mice from thromboembolism. Interestingly, fibrosis was observed in spleens of old COX-2-/- mice (28 weeks old). In conclusion, COX-2 deletion delays BM megakaryopoiesis promoting a compensatory splenic MK hyperplasia, with a release of hyper-responsive platelets and increased thrombogenicity in vivo. COX-2 seems to contribute to physiological MK maturation and pro-platelet formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app