Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Social exclusion changes histone modifications H3K4me3 and H3K27ac in liver tissue of wild house mice.

Wild house mice form social hierarchies with aggressive males defending territories, in which females, young mice and submissive adult males share nests. In contrast, socially excluded males are barred from breeding groups, have numerous bite wounds and patches of thinning fur. Since their feeding times are often disrupted, we investigated whether social exclusion leads to changes in epigenetic marks of metabolic genes in liver tissue. We used chromatin immunoprecipitation and quantitative PCR to measure enrichment of two activating histone marks at 15 candidate loci. The epigenetic profiles of healthy males sampled from nest boxes differed significantly from the profiles of ostracized males caught outside of nests and showing bite wounds indicative of social exclusion. Enrichment of histone-3 lysine-4 trimethylation (H3K4me3) changed significantly at genes Cyp4a14, Gapdh, Nr3c1, Pck1, Ppara, and Sqle. Changes at histone-3 lysine-27 acetylation (H3K27ac) marks were detected at genes Fasn, Nr3c1, and Plin5. A principal components analysis separated the socialized from the ostracized mice. This was independent of body weight for the H3K4me3 mark, and partially dependent for H3K27ac. There was no separation, however, between healthy males that had been sampled from two different nests. A hierarchical cluster analysis also separated the two phenotypes, which was independent of body weight for both markers. Our study shows that a period of social exclusion during adult life leads to quantitative changes in histone modification patterns in mouse liver tissue. Similar epigenetic changes might occur during the development of stress-induced metabolic disorders in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app