Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Region-Specific Alterations of Matrix Metalloproteinase Activity in Multiple System Atrophy.

BACKGROUND: MSA is a sporadic progressive neurodegenerative disorder characterized by a variable combination of parkinsonism, cerebellar ataxia, and autonomic dysfunction. The pathological hallmark of MSA is the accumulation of alpha-synuclein aggregates in the cytoplasm of oligodendrocytes along with neuronal loss and neuroinflammation, as well as blood-brain barrier dysfunction and myelin deterioration. Matrix metalloproteinases are zinc-dependent endopeptidases involved in the remodeling of the extracellular matrix, demyelination, and blood-brain barrier permeability. Several lines of evidence indicate a role for these enzymes in various pathological processes, including stroke, multiple sclerosis, Parkinson's, and Alzheimer's disease.

METHODS: This study aimed to assess potential alterations of matrix metalloproteinase-1, -2, -3, and -9 expression or activity in MSA postmortem brain tissue.

RESULTS: Gelatin zymography revealed increased matrix metalloproteinase-2 activity in the putamen, but not in the frontal cortex, of MSA patients relative to controls. Immunohistochemistry revealed increased number of glial cells positive for matrix metalloproteinase-1, -2, and -3 in the putamen and frontal cortex of MSA patients. Double immunofluorescence revealed that matrix metalloproteinase-2 and -3 were expressed in astrocytes and microglia. Only matrix metalloproteinase-2 colocalized with alpha-synuclein in oligodendroglial cytoplasmic inclusions.

CONCLUSION: These results demonstrate widespread alterations of matrix metalloproteinase expression in MSA and a pattern of increased matrix metalloproteinase-2 expression and activity affecting preferentially a brain region severely affected (putamen) over a relatively spared region (frontal cortex). Elevated matrix metalloproteinase expression may thus contribute to the disease process in MSA by promoting blood-brain barrier dysfunction and/or myelin degradation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app