JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Expression of heat shock protein 27 correlates with actin cytoskeletal dynamics and contractility of cultured human bladder smooth muscle cells.

Heat shock protein 27 (HSP27) is one of the most important chaperone proteins that modulates smooth muscle contraction. Here we investigated the effects of HSP27 expression on cytoskeleton dynamics and contractile function of human bladder smooth muscle cells (BSMCs) in vitro. Cultured human BSMCs were transfected with lentiviral vectors expressing either HSP27 or HSP27-siRNAs. Normal BSMCs cells and cells transfected with the empty lentivirus were used as control. Cells were then cultured on Flexcell flexible membrane dishes and mechanical stretch (14.8% elongation) was applied. The stretch caused significant disruption of actin cytoskeletal structure and decrease in F/G-actin ratio in BSMCs with HSP27 over-expression, knock-down and control groups (P<0.05) as indicated by phalloidin-FITC staining. It was also shown that the structure of actin filaments in HSP27 over-expressed cells recovered and F/G-actin ratio significantly increased at 12h after stretching compared to unstretched cells (P<0.05), but not in HSP27 knock-down cells, suggesting that HSP27 promoted the recovery of cytoskeletal structure in BSMCs from stretch-induced injury. In addition, the contractile force of BSMCs was enhanced by over-expression of HSP27 and attenuated by knock-down of HSP27 (P<0.05), suggesting a pivotal role of HSP27 in regulating bladder smooth muscle contraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app