Comparative Study
Journal Article
Research Support, N.I.H., Extramural
Research Support, N.I.H., Intramural
Add like
Add dislike
Add to saved papers

Contrast-Enhanced Ultrasound: A Novel Noninvasive, Nonionizing Method for the Detection of Brown Adipose Tissue in Humans.

BACKGROUND: Brown adipose tissue (BAT) consumes glucose when it is activated by cold exposure, allowing its detection in humans by (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) with computed tomography (CT). The investigators recently described a novel noninvasive and nonionizing imaging method to assess BAT in mice using contrast-enhanced ultrasound (CEUS). Here, they report the application of this method in healthy humans.

METHODS: Thirteen healthy volunteers were recruited. CEUS was performed before and after cold exposure in all subjects using a continuous intravenous infusion of perflutren gas-filled lipid microbubbles and triggered imaging of the supraclavicular space. The first five subjects received microbubbles at a lower infusion rate than the subsequent eight subjects and were analyzed as a separate group. Blood flow was estimated as the product of the plateau (A) and the slope (β) of microbubble replenishment curves. All underwent (18)F-FDG PET/CT after cold exposure.

RESULTS: An increase in the acoustic signal was noted in the supraclavicular adipose tissue area with increasing triggering intervals in all subjects, demonstrating the presence of blood flow. The area imaged by CEUS colocalized with BAT, as detected by ¹⁸F-FDG PET/CT. In a cohort of eight subjects with an optimized CEUS protocol, CEUS-derived BAT blood flow increased with cold exposure compared with basal BAT blood flow in warm conditions (median Aβ = 3.3 AU/s [interquartile range, 0.5-5.7 AU/s] vs 1.25 AU/s [interquartile range, 0.5-2.6 AU/s]; P = .02). Of these eight subjects, five had greater than twofold increases in blood flow after cold exposure; these responders had higher BAT activity measured by (18)F-FDG PET/CT (median maximal standardized uptake value, 2.25 [interquartile range, 1.53-4.57] vs 0.51 [interquartile range, 0.47-0.73]; P = .02).

CONCLUSIONS: The present study demonstrates the feasibility of using CEUS as a noninvasive, nonionizing imaging modality in estimating BAT blood flow in young, healthy humans. CEUS may be a useful and scalable tool in the assessment of BAT and BAT-targeted therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app