Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Copper improves the anti-angiogenic activity of disulfiram through the EGFR/Src/VEGF pathway in gliomas.

Cancer Letters 2015 December 2
Disulfiram (DSF) possesses anticancer activity by inducing apoptosis in vitro and in vivo in a copper (Cu)-dependent manner. DSF also potently inhibits angiogenesis, but the effect of Cu on this anti-angiogenic activity is unknown. Here we show that DSF inhibits the proliferation, migration, invasion, adhesion and complex tube formation of human umbilical vascular endothelial cells (HUVECs). Aortic ring assays and Matrigel plug assays revealed that DSF significantly inhibited the formation of microvessels. Importantly, Cu improved the anti-angiogenic activity of DSF in all these assays, while copper alone had no effect. DSF/Cu treatment of U87 human glioblastoma cells resulted in suppression of VEGF secretion through the EGFR/c-Src/VEGF pathway. Reduction of EGFR phosphorylation disables recruitment of multiple Src homology 2 (SH2) domains, resulting in transcriptional down-regulation of VEGF. The role of EGFR/c-Src/VEGF pathway was further confirmed by using specific inhibitor, which significantly improved the anti-angiogenic activity of DSF/Cu. DSF/Cu also exerted increased anti-tumor effects on subcutaneous and intracerebral U87 xenograft models by reducing microvessel density (MVD) and VEGF expression. These results indicate that Cu improves the anti-angiogenic activity of DSF by targeting the EGFR/Src/VEGF signaling pathway, thus providing a rationale for the use of DSF/Cu rather than DSF alone as an angiogenesis inhibitor in clinical applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app