Add like
Add dislike
Add to saved papers

In vitro, antithrombotic and bleeding time studies of BMS-654457, a small-molecule, reversible and direct inhibitor of factor XIa.

BMS-654457 ((+) 3'-(6-carbamimidoyl-4-methyl-4-phenyl-1,2,3,4-tetrahydro-quinolin-2-yl)-4-carbamoyl-5'-(3-methyl-butyrylamino)-biphenyl-2-carboxylic acid) is a small-molecule factor XIa (FXIa) inhibitor. We evaluated the in vitro properties of BMS-654457 and its in vivo activities in rabbit models of electrolytic-induced carotid arterial thrombosis and cuticle bleeding time (BT). Kinetic studies conducted in vitro with a chromogenic substrate demonstrated that BMS-654457 is a reversible and competitive inhibitor for FXIa. BMS-654457 increased activated partial thromboplastin time (aPTT) without changing prothrombin time. It was equipotent in prolonging the plasma aPTT in human and rabbit, and less potent in rat and dog. It did not alter platelet aggregation to ADP, arachidonic acid and collagen. In vivo, BMS-654457 or vehicle was given IV prior to initiation of thrombosis or cuticle transection. Preservation of integrated carotid blood flow over 90 min (iCBF, % control) was used as a marker of antithrombotic efficacy. BMS-654457 at 0.37 mg/kg + 0.27 mg/kg/h produced almost 90 % preservation of iCBF compared to its vehicle (87 ± 10 and 16 ± 3 %, respectively, n = 6 per group) and increased BT by 1.2 ± 0.04-fold (P < 0.05). At a higher dose (1.1 mg/kg + 0.8 mg/kg/h), BMS-654457 increased BT by 1.33 ± 0.08-fold. This compares favorably to equivalent antithrombotic doses of reference anticoagulants (warfarin and dabigatran) and antiplatelet agents (clopidogrel and prasugrel) which produced four- to six-fold BT increases in the same model. In summary, BMS-654457 was effective in the prevention of arterial thrombosis in rabbits with limited effects on BT. This study supports inhibition of FXIa, with a small-molecule, reversible and direct inhibitor as a promising antithrombotic therapy with a wide therapeutic window.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app