Add like
Add dislike
Add to saved papers

Expression Levels of PPARγ and CYP-19 in Polycystic Ovarian Syndrome Primary Granulosa Cells: Influence of ω-3 Fatty Acid.

BACKGROUND: The omega-3 fatty acid (ω-3 fatty acid) such as eicosapentaenoic acid (EPA) is currently used in the clinic as a nutritional supplement in the treatment of poly- cystic ovarian syndrome (PCOS). The present study was designed to investigate the ef- fect of EPA on the expression levels of peroxisome proliferator-activated receptor gamma (PPARγ) and cytochrome P450 aromatase (encoded by the CYP-19) in primary cultured granulosa cells (GC) from patients undergoing in vitro fertilization (IVF), and also to compare these effects with those in GC of PCOS patients.

MATERIALS AND METHODS: In this experimental study, human GC were isolated, pri- mary cultured in vitro, exposed to a range of concentrations of the EPA and in- vestigated with respect to gene expression levels of PPARγ and CYP-19 using real time-polymerase chain reaction (PCR). The participants (n=30) were the patients admitted to the IVF Center in February-March 2013 at Alzahra Hospital, Tabriz, Iran, who were divided into two groups as PCOS (n=15) and non-PCOS (n=15) women (controls).

RESULTS: All doses of the EPA significantly induced PPARγ mRNA gene expression level as compared to the control recombinant follicle stimulating hormone (rFSH) alone condi- tion. High doses of EPA in the presence of rFSH produced a stimulatory effect on expres- sion level of PPARγ (2.15-fold, P=0.001) and a suppressive effect (0.56-fold, P=0.01) on the expression level of CYP-19, only in the PCOS GC.

CONCLUSION: EPA and FSH signaling pathway affect differentially on the gene ex- pression levels of PPARγ and CYP-19 in PCOS GC. Altered FSH-induced PPARγ activity in PCOS GC may modulate the CYP-19 gene expression in response to EPA, and possibly modulates the subsequent steroidogenesis of these cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app