Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

IL-17 sequestration via salivary gland gene therapy in a mouse model of Sjogren's syndrome suppresses disease-associated expression of the putative autoantigen Klk1b22.

INTRODUCTION: IL-17 has a putative role in the pathophysiology of Sjogren's syndrome (SS) and has been shown to be upregulated in the salivary glands of affected individuals. Sequestration of IL-17 with Adenoviral-mediated gene therapy has previously shown a benefit upon the SS-like phenotype in the Aec1/Aec2 mouse model. We sought to understand the proteomic consequences of IL-17 sequestration in the salivary gland of this mouse model as a means of illuminating the role of IL-17 in SS-like disease.

METHODS: Ultrasound-assisted gene transfer (UAGT) was utilized to express a fusion protein composed of the extracellular portion of the IL-17 receptor fused to fragment of crystallization (Fc) in the submandibular glands of Aec1/Aec2 mice at 8 weeks of age. After confirming expression of the fusion protein and local and systemic sequestration of IL-17, proteomic profiling was performed on submandibular glands of a treated cohort of Aec1/Aec2 animals relative to the background strain and sham-treated animals.

RESULTS: The most notable proteomic signatures of IL-17 sequestration on SS-like disease-related proteins were Kallikrein-related peptidases, including the putative autoantigen Klk1b22. IL-17 sequestration also notably led to an isoelectric shift, but not a molecular weight shift, of Kallikrein-1, attributed to phosphorylation.

CONCLUSION: Non-viral IL-17 sequestration gene therapy in the salivary gland is feasible and downregulates expression of a putative SS autoantigen in the Aec1/Aec2 mouse.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app