JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Natural acquired inhibitory antibodies to Plasmodium vivax Duffy binding protein (PvDBP-II) equally block erythrocyte binding of homologous and heterologous expressed PvDBP-II on the surface of COS-7 cells.

The binding domain of Plasmodium vivax Duffy binding protein (PvDBP-II) is a promising blood-stage vaccine candidate for vivax malaria. For the development of a successful vivax malaria vaccine based on DBP-II, the antigenic diversity and also naturally occurring functional antibodies to different PvDBP-II variant types in the various populations must be determined. However, similar to other blood-stage antigens, allelic variation within the PvDBP-II is a fundamental challenge for the development of a broadly efficient vaccine. The present study was performed to define whether the polymorphisms in PvDBP-II influence the nature of functional inhibitory activity of naturally acquired or induced anti-DBP-II antibodies in mice. In this investigation, five genetically distinct variants of PvDBP-II were transiently expressed on the COS-7 cell surface. Erythrocyte-binding inhibition assay (EBIA) was performed using human sera infected with corresponding and non-corresponding P. vivax variants as well as by the use of mice sera immunized with different expressed recombinant PvDBP-IIs. EBIA results showed that the inhibitory percentage varied between 50 and 63 % by using sera from infected individuals, and in case of mouse antisera, inhibition was in the range of 76-86 %. Interestingly, no significant difference was detected in red blood cell binding inhibition when different PvDBP-II variants on the COS-7 cell surfaces were incubated with heterologous and homologous sera infected with PvDBP-II variants. This suggests that the detected polymorphisms in all five forms of PvDBP-II may not affect functional activity of anti-DBP-II antibodies. In conclusion, our results revealed that there are functional cross-reactive antibody responses to heterologous PvDBP-II variants that might provide a broader inhibitory response against all, or at least the majority of strains compared to single allele of this protein that should be considered in development of PvDBP-II-based vaccine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app