Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Neuroectoderm-specific deletion of cathepsin D in mice models human inherited neuronal ceroid lipofuscinosis type 10.

Biochimie 2016 March
Cathepsin D (Ctsd) is a ubiquitously expressed aspartic protease functioning primarily in the acidic endosomal/lysosomal cell compartment. At an age of 26 ± 1 days, mice with constitutive Ctsd deficiency (Ctsd(-/-)) die from a neurodegenerative lysosomal storage disease equivalent to the congenital neuronal ceroid lipofuscinosis (NCL) type 10 in humans. In addition to neurodegeneration, Ctsd(-/-) mice exhibit a loss of CD4(+)/CD8(+)-double-positive thymocytes and an atrophy of the intestinal mucosa. To date, it is not understood if and how these phenotypes are triggering each other. In addition, the cell type causing initiation of NCL in Ctsd(-/-) mice has not been identified yet. To investigate the tissue- and cell type-specific functions of Ctsd, we generated a novel conditional Ctsd allele by flanking the second exon with loxP sites. We compared a ubiquitous Ctsd deletion with a deletion of the protease by a Nestin-promoter controlled Cre-recombinase expression in cells of neuroectodermal origin, e.g. in neurons and astroglia, but not in microglia. First, we confirmed absence of Ctsd in the respective cell- and tissue types. The neuroectoderm specific knock-out mice survived about 5.5 days longer than the mice with ubiquitous Ctsd deletion, which was in line with the progress in brain histopathology. Atrophies of thymus and small intestine were delayed to similar extend. The conditional Ctsd knock-out mouse model established in this study not only demonstrates that this type of NCL is initiated by cells of neuroectodermal origin, but will also help to further study tissue-specific functions of Ctsd in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app