Add like
Add dislike
Add to saved papers

Dynamic Neural Networks for Kinematic Redundancy Resolution of Parallel Stewart Platforms.

Redundancy resolution is a critical problem in the control of parallel Stewart platform. The redundancy endows us with extra design degree to improve system performance. In this paper, the kinematic control problem of Stewart platforms is formulated to a constrained quadratic programming. The Karush-Kuhn-Tucker conditions of the problem is obtained by considering the problem in its dual space, and then a dynamic neural network is designed to solve the optimization problem recurrently. Theoretical analysis reveals the global convergence of the employed dynamic neural network to the optimal solution in terms of the defined criteria. Simulation results verify the effectiveness in the tracking control of the Stewart platform for dynamic motions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app