EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Multimodal heart beat detection using signal quality indices.

The electrocardiogram (ECG) is a well studied signal from which many clinically relevant parameters can be derived, such as heart rate. A key component in the estimation of these parameters is the accurate detection of the R peak in the QRS complex. While corruption of the ECG by movement artefact or sensor failure can result in poor delineation of the R peak, use of synchronously measured signals could allow for resolution of the R peak even scenarios with poor quality ECG recordings. Robust estimation of R peak locations from multimodal signals facilitates real time monitoring and is likely to reduce false alarms due to inaccurate derived parameters.We propose a method which fuses R peaks detected on the ECG using an energy detector with those detected on the arterial blood pressure (ABP) waveform using the length transform. A signal quality index (SQI) for the two signals is then derived. The ECG SQI is based upon the agreement between two distinct peak detectors. The ABP SQI estimates the blood pressure at various phases in the cardiac cycle and only accepts the signal as good quality if the values are physiologically plausible. Detections from these two signals were merged by selecting the R peak detections from the signal with a higher SQI. The approach presented in this paper was evaluated on datasets provided for the Physionet/Computing in Cardiology Challenge 2014. The algorithm achieved a sensitivity of 95.1% and positive predictive value of 89.3% on an external evaluation set, and achieved a score of 91.5%.The method here demonstrated excellent performance across a variety of signal morphologies collected during clinical practice. Fusion of R peaks from other signals has the potential to provide informed estimates of the R peak location in situations where the ECG is noisy or completely absent. Source code for the algorithm is made available freely online.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app