Journal Article
Review
Add like
Add dislike
Add to saved papers

Modeled Osteopathic Manipulative Treatments: A Review of Their in Vitro Effects on Fibroblast Tissue Preparations.

A key osteopathic tenet involves the body's ability to self-heal. Osteopathic manipulative treatment (OMT) has been evolved to improve this healing capacity. The authors' in vitro work has focused on modeling 2 common OMT modalities: myofascial release (MFR) and counterstrain. Their studies have evaluated the effects of these modalities on wound healing, cytokine secretion, and muscle repair. The key components of the host response to mechanical forces are fibroblasts, which are the main fascial cells that respond to different types of strain by secreting anti-inflammatory chemicals and growth factors, thus improving wound healing and muscle repair processes. The purpose of this review is to discuss the cellular and molecular mechanisms by which MFR and other OMT modalities work, in particular, the role of strained fibroblasts in inflammation, wound healing, and muscle repair and regeneration. Changing MFR parameters, such as magnitude, duration, direction, and frequency of strain, might uniquely affect the physiologic response of fibroblasts, muscle contraction, and wound healing. If such results are clinically translatable, the mechanisms underlying the clinical outcomes of OMT modalities will be better understood, and these treatments will be more widely accepted as evidence-based, first-line therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app