Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Peroxisome proliferator activated receptor-γ agonists protect oligodendrocyte progenitors against tumor necrosis factor-alpha-induced damage: Effects on mitochondrial functions and differentiation.

Experimental Neurology 2015 September
The activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ) is known to exert anti-inflammatory and neuroprotective effects and PPAR-γ agonists are considered potential therapeutic agents in brain diseases including those affecting myelin. In demyelinating diseases such as multiple sclerosis (MS), inflammation is one of the causes of myelin and axonal damage. Oligodendrocyte (OL) differentiation is highly dependent on mitochondria, which are major targets of inflammatory insult. Here we show that PPAR-γ agonists protect OL progenitors against the maturational arrest induced by the inflammatory cytokine TNF-α by affecting mitochondrial functions. We demonstrate that the inhibition of OL differentiation by TNF-α is associated with i) increased mitochondrial superoxide production; ii) decreased mitochondrial membrane potential (mMP); and iii) decreased ADP-induced Ca(2+) oscillations, which we previously showed to be dependent on efficient mitochondria. The TNF-α effects were comparable to those of the mitochondrial toxin rotenone, further suggesting that TNF-α damage is mediated by mitochondrial function impairment. PPAR-γ agonists protected OL progenitors against the inhibitory activities of both TNF-α and rotenone on mMP, mitochondrial ROS production, Ca(2+) oscillations and OL differentiation. Finally, the PPAR-γ agonist pioglitazone increased the expression of PGC-1α (a mitochondrial biogenesis master regulator), UCP2 (a mitochondrial protein known to reduce ROS production), and cytochrome oxidase subunit COX1. These findings confirm the central role of mitochondria in OL differentiation and point to mitochondria as major targets of PPAR-γ agonist protection against TNF-α damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app