Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Use of a proximity extension assay proteomics chip to discover new biomarkers for human atherosclerosis.

Atherosclerosis 2015 September
BACKGROUND AND AIMS: We used a proteomics array to simultaneously measure multiple proteins that have been suggested to be associated with atherosclerosis and related them to plaque prevalence in carotid arteries in a human population-based study.

METHODS: In the Prospective Study of the Vasculature in Uppsala Seniors (PIVUS; n = 931, 50% women, all aged 70 years), the number of carotid arteries with plaques was recorded by ultrasound. Levels of 82 proteins were assessed in plasma by a proximity extension assay (Proseek Multiplex CVD, Olink Bioscience, Uppsala, Sweden) and related to carotid measures in a regression framework.

RESULTS: Following adjustment for multiple testing with Bonferroni correction, seven of the proteins were significantly related to the number of carotid arteries affected by plaques in sex-adjusted models (osteoprotegrin, T-cell immunoglobulin and mucin domain (TIM)-1, growth/differentiation factor 15 (GDF-15), matrix metalloprotease-12 (MMP-12), renin, tumor necrosis factor ligand superfamily member 14 (TNFSF14) and growth hormone). Of these, renin (odds ratio [OR], 1.30; 95% confidence interval [CI], 1.13-1.49 per standard deviation increase), growth hormone (OR, 1.24; 95% CI, 1.08-1.43), osteoprotegerin (OR, 1.22; 95% CI, 1.05-1.43) and TNFSF14 (OR, 1.17; 95% CI, 1.01-1.35) were related to plaque prevalence independently of each other and traditional cardiovascular risk factors.

CONCLUSION: A novel targeted proteomics approach using the proximity extension technique discovered several new associations of candidate proteins with carotid artery plaque prevalence in a large human sample.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app