Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Temporal-Spatial Variation of Global GPS-Derived Total Electron Content, 1999-2013.

To investigate the temporal-spatial distribution and evolutions of global Total Electron Content (TEC), we estimate the global TEC data from 1999 to 2013 by processing the GPS data collected by the International Global Navigation Satellite System (GNSS) Service (IGS) stations, and robustly constructed the TEC time series at each of the global 5°×2.5° grids. We found that the spatial distribution of the global TEC has a pattern where the number of TECs diminishes gradually from a low-latitude region to high-latitude region, and anomalies appear in the equatorial crest and Greenland. Temporal variations show that the peak TEC appears in equinoctial months, and this corresponds to the semiannual variation of TEC. Furthermore, the winter anomaly is also observed in the equatorial area of the northern hemisphere and high latitudes of the southern hemisphere. Morlet wavelet analysis is used to determine periods of TEC variations and results indicate that the 1-day, 26.5-day, semi-annual and annual cycles are the major significant periods. The fitting results of a quadratic polynomial show that the effect of solar activity on TEC is stronger in low latitudes than in mid-high latitudes, and stronger in the southern hemisphere than in the northern hemisphere. But the effect in low latitudes in the northern hemisphere is stronger than that in low latitudes in the southern hemisphere. The effect of solar activity on TECs was analyzed with the cross wavelet analysis and the wavelet coherence transformation, and we found that there appears to be a strong coherence in the period of about 27 days. So the sunspot as one index of solar activity seriously affects the TEC variations with the sun's rotation. We fit the TEC data with the least squares spectral analysis to study the periodic variations of TEC. The changing trend of TEC is generally -0.08 TECu per year from 1999 to 2013. So TECs decrease over most areas year by year, but TECs over the Arctic around Greenland maintained a rising trend during these 15 years.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app