Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fibrillin-1 Regulates Skeletal Stem Cell Differentiation by Modulating TGFβ Activity Within the Marrow Niche.

A full understanding of the microenvironmental factors that control the activities of skeletal stem cells (also known as mesenchymal stem cells [MSCs]) in the adult bone marrow holds great promise for developing new therapeutic strategies to mitigate age-related diseases of bone and cartilage degeneration. Bone loss is an understudied manifestation of Marfan syndrome, a multisystem disease associated with mutations in the extracellular matrix protein and TGFβ modulator fibrillin-1. Here we demonstrate that progressive loss of cancellous bone in mice with limbs deficient for fibrillin-1 (Fbn1(Prx1-/-) mice) is accounted for by premature depletion of MSCs and osteoprogenitor cells combined with constitutively enhanced bone resorption. Longitudinal analyses of Fbn1(Prx1-/-) mice showed incremental bone loss and trabecular microarchitecture degeneration accompanied by a progressive decrease in the number and clonogenic potential of MSCs. Significant paucity of marrow fat cells in the long bones of Fbn1(Prx1-/-) mice, together with reduced adipogenic potential of marrow stromal cell cultures, indicated an additional defect in MSC differentiation. This postulate was corroborated by showing that an Fbn1-silenced osteoprogenitor cell line cultured in the presence of insulin yielded fewer than normal adipocytes and exhibited relatively lower PPARγ levels. Consonant with fibrillin-1 modulation of TGFβ bioavailability, cultures of marrow stromal cells from Fbn1(Prx1-/-) limb bones showed improper overactivation of latent TGFβ. In line with this finding, systemic TGFβ neutralization improved bone mass and trabecular microarchitecture along with normalizing the number of MSCs, osteoprogenitor cells, and marrow adipocytes. Collectively, our findings show that fibrillin-1 regulates MSC activity by modulating TGFβ bioavailability within the microenvironment of marrow niches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app