JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Glucocorticoids inhibited hypothalamic target of rapamycin in high fat diet-fed chicks.

Poultry Science 2015 September
The present study was conducted with broiler chicks exposed to dexamethasone (DEX) to explore its effects on hypothalamic target of rapamycin (TOR) signaling and regulating appetite in diets containing different energy levels. At 5 d age, 48 chicks were divided into one of 4 groups: high-fat diet (HFD) or low-fat diet (LFD) and intracerebroventricular (ICV) injected with either dexamethasone (DEX; 4 μg/2 μL) or saline at 10 d age. The results showed that DEX significantly inhibited gene expression of cocaine- and amphetamine-regulated transcripts (CART), melanocortin receptor 4 (MC4R), and corticotropin-releasing hormone (CRH), and inhibited the protein level of the phospho-TOR compared with the control in HFD-fed chicks (P<0.05) but not in LFD-fed chicks (P>0.05). After DEX treatment, hypothalamic agouti-related peptide levels were decreased significantly in HFD-fed chicks (P<0.05) but not in LFD-fed chicks (P>0.05). Compared to the control, DEX-treated chicks did not present any significant changes in neuropeptide Y gene expression with either HFD or LFD (P>0.05), but pro-opiomelanocortin levels were depressed by ICV DEX treatment with both diets (P<0.05). In conclusion, glucocorticoids (GC) downregulated hypothalamic gene expression of CART, CRH, and MC4R in HFD-fed chicks, suggesting that the regulatory network formed by these genes is associated with the appetite control during stress. The TOR pathway may be involved in the regulation of GC on appetite-related genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app