JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Peptide-Mediated PEGylation of Polysulfone Reduces Protein Adsorption and Leukocyte Activation.

The exposure of blood to bioincompatible materials used for dialysis triggers leukocyte activation and protein adsorption. We describe a single-step, postmanufacturing method for surface modification to create biomaterials used in medical devices and dialysis with altered surface characteristics. Peptides derived from the receptor-binding domain of the type IV pilin of Pseudomonas aeruginosa were synthesized using L and D-amino acids to generate L-K122-4, enantiomer D-K122-4, and D-retroinverso RI-K122-4 peptides. L-K122-4, D-K122-4, and RI-K122-4 peptides, but not control peptides, bound durably to the surfaces of materials used in medical devices and dialysis including silicone and polysulfone. D-K122-4 enantiomeric peptides were protease resistant on polysulfone and could remain bound to the surface for up to 28 days. To demonstrate that K122-4 peptides could be used to modify material surfaces, D-K122-4 peptide was conjugated to polyethylene glycol (D-K122-4-PEG) and applied to polysulfone. When compared with untreated material, D-K122-4-PEG reduced the surface adsorption of albumin or immunoglobulin G to polysulfone. In coincubation experiments, although uncoated polysulfone induced pro-interleukin-1β cytokine expression in leukocytes, cellular activation was prevented when leukocytes were incubated with D-K122-4-PEG-modified polysulfone. These data demonstrate the proof of principle that K122-4 peptides can be applied to modify the surface characteristics of materials used for dialysis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app