Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Estrogen suppresses epileptiform activity by enhancing Kv4.2-mediated transient outward potassium currents in primary hippocampal neurons.

Catamenial epilepsy is a common phenomenon in female epileptic patients that is, in part, influenced by the 17-β-estradiol level during the menstrual cycle, which modulates the strength of the epileptic seizures. However, the underlying mechanism(s) for catamenial epilepsy remains unknown. In the present study, the effect of 17‑β‑estradiol on modulating epileptiform activities was investigated in cultured hippocampal neurons by focusing on the transient outward potassium current. Using the patch clamp technique, 17‑β‑estradiol was demonstrated to have a dose‑dependent U‑shape effect on epileptiform bursting activities in cultured hippocampal neurons; only the low dose (~0.1 ng/ml) of 17‑β‑estradiol had a suppressive effect on the epileptiform activities. The blockade effect of the low dose 17‑β‑estradiol could be suppressed by phrixotoxin2 (PaTx2), a selective channel blocker for voltage‑gated potassium channel type 4.2 (Kv4.2), which mediates the transient outward potassium current. Furthermore, the 17‑β‑estradiol bell‑shape‑like dose‑dependently enhanced the transient outward potassium current, which was inhibited by the estrogen receptor antagonist ICI 182,780. In conclusion, these results indicate that reduced activation of the transient outward potassium current by a high (or none) 17‑β‑estradiol level may enhance the epileptiform bursting activities in neurons, which may be one of the triggering causes for catamenial epilepsy, and therefore, maintaining a certain low 17‑β‑estradiol level may aid in the control of catamenial epilepsy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app