Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Kupffer cell-mediated exacerbation of methimazole-induced acute liver injury in rats.

Methimazole (MTZ), an anti-thyroid drug, is known to cause liver injury in humans. It has been demonstrated that MTZ-induced liver injury in Balb/c mice is accompanied by T helper (Th) 2 cytokine-mediated immune responses; however, there is little evidence for immune responses associated with MTZ-induced liver injury in rats. To investigate species differences in MTZ-induced liver injury, we administered MTZ with a glutathione biosynthesis inhibitor, L-buthionine-S,R-sulfoximine (BSO), to F344 rats and subsequently observed an increase in plasma alanine aminotransferase (ALT) and high-mobility group box 1 (HMGB1), which are associated with hepatic lesions. The hepatic mRNA expression of innate immune-related genes significantly increased in BSO- and MTZ-treated rats, but the change in Th2-related genes was not much greater than the change observed in the previous mouse study. Moreover, an increase in Kupffer cells and an induction of the phosphorylation of extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK) proteins were accompanied by an increase in Toll-like receptor 4 (TLR4) expression, indicating that Kupffer cell activation occurs through HMGB1-TLR4 signaling. To elucidate the mechanism of liver injury in rats, gadolinium chloride, which inactivates the function of Kupffer cells, was administered before BSO and MTZ administration. The gadolinium chloride treatment significantly suppressed the increased ALT, which was accompanied by decreased hepatic mRNA expression related to innate immune responses and ERK/JNK phosphorylation. In conclusion, Kupffer cell-mediated immune responses are crucial factors for the exacerbation of MTZ-induced liver injury in rats, indicating apparent species differences in the immune-mediated exacerbation of liver injury between mice and rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app